Dirac, Heisenberg, and Schrödinger (L to R) at the Stockholm train station on their way to the Nobel Prize ceremony, December 1933.

DP There are symmetries that are nor related to operations in the world, e.g. the internal symmetries such as isospin. What meaning do they have? Do you think they are related ultimately to the properties of space and time?

Heisenberg: I suspect that isospin is a symmetry similar to space and time. I cannot say that it is related to them. I would say that there are a number of fundamental symmetries in this world which may in future be reduced to something still simpler, but so far we must take them as given, as a result of our experiments. One of the most fundamental symmetries is the symmetry of the Lorentz group, that is space and time, and then isospin groups, scale groups, and so on. So there are a number of groups which are fundamental in the sense that in describing the smallest particles we refer to their behaviour and transformations. The idea is that one can distinguish between a natural law, a fundamental law, which determines for instance a spectrum of elementary particles, and the general behaviour of the cosmos, which is perhaps something not at once given through this law. I might remind you, for instance, of Einstein' s equations of gravitation. Einstein wrote down his field equations and thought that gravitational fields are always determined by them. But the cosmos is not unambiguously determined by these field equations, although there are several models of the cosmos which are compatible with them. In the same sense, I would say that there is an underlying natural law which determines the spectrum of elementary particles, but the shape of the cosmos is not unambiguously determined by this law. Logically, it would be possible to have various types of cosmos which are in agreement with it. However, if a certain cosmological model has been 'chosen,' then this model, of course, has some consequences for the spectrum of elementary particles.

DP Are you saying that there exist laws which are independent or outside the universe, outside the world, which reality breaks, or that it breaks the symmetry represented by the laws?

Heisenberg: 'Laws' just means that some fundamental symmetries are inherent either in nature or in our observation of nature. You may know about the attempts of Weizsäcker, who tried to derive the laws simply from logic. We have to use language to arrive at conclusions, to study alternatives, and he questions whether from the alternatives alone we can arrive at these symmetries. I don't know whether his attempts are successful or not. In physics, we can only work with the assumption that we have natural laws. If we have no natural laws, then anything can happen, and we can only describe what we see, and that's all.

DP Another feature of your theory which seems to go against the current trend- partons and quarks, etc. - is that you feel that no particle is any more elementary than any other.

Heisenberg: Even if quarks should be found (and I do not believe that they will be), they will not be more elementary than other particles, since a quark could be considered as consisting of two quarks and one anti-quark, and so on. I think we have learned from experiments that by getting to smaller and smaller units, we do not come to fundamental units, or indivisible units, but we do come to a point where division has no meaning. This is a result of the experiments of the last twenty years, and I am afraid that some physicists simply ignore this experimental fact.

DP So it would seem that elementary particles are just representations of symmetries. Would you say that they are not fundamental things in themselves, or 'building-blocks of the universe,' to use the old-fashioned language?

Heisenberg: Again, the difficulty is in the meaning of the words. Words like building blocks or really existing are too indefinite in their meaning, so I would hesitate to answer your questions, since an answer would depend on the definitions of the words.

DP To be more precise, ultimately could one have a description of nature which needed only elementary particles or, alternatively, a description in which the elementary particles would be defined in terms of the rest of the universe? Or is there no starting-point, as it were, no single axiom on which one can build the whole of physics?

Heisenberg: No. Even if, for instance, that formula which Pauli and I wrote down fifty years ago turned out to be the correct formulation for the spectrum of elementary particles, it is certainly not the basis for all of physics. Physics can never be closed, or brought to an end, so that we must turn to biology or such things. What we can hope for, I think, is that we may get an explanation of the spectrum of elementary particles, and with it also an explanation of electromagnetism and gravitation, in the same sense as we get an explanation of the spectrum of a big molecule from the Schrödinger equation. This does not mean that thereby physics has come to an end. It means that, for instance, at the boundary between physics and biology, there may be new features coming in which are not thought of in physics and chemistry. Something entirely new must happen. Therefore I criticize those formulations which imply an end to physics.

DP Is it possible to reduce physics or any element of physics purely to logic and axioms?

Heisenberg: I would say that certain parts of physics can always be reduced to logical mathematics or mathematical schemes. This has been possible for Newtonian physics, for quantum mechanics, and so on, so I do not doubt that it will also be possible for the world of the elementary particles. In astrophysics today, one comes upon pulsars and black holes, two regions in which gravitation becomes enormous, and perhaps a stronger force than all other forces. I could well imagine that in such black holes, for instance (if they exist), the spectrum of elementary particles would be quite different from the spectrum we now have. In the black holes, then, we would have a new area of physics, to some extent separated from that part which we now call elementary particle physics. There would be connections, and one would have to study how to go from the one to the other; but I do not believe in an end of physics. when I try to use quantum theory within the realm of biology.